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Abstract Lagrangian duality can be derived from separation in the Image Space, namely
the space where the images of the objective and constraining functions of the given extremum
problem run. By exploiting such a result, we analyse the relationships between Wolfe and
Mond-Weir duality and prove their equivalence in the Image Space under suitable generalized
convexity assumptions.
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1 Introduction

The image space analysis can be applied to study any kind of problem, say P , that can be
expressed under the form of the impossibility of a parametric system [3,5].

The impossibility of such a system is reduced to the disjunction of two suitable subsets K
and H of the Image Space (IS): K is defined by the images of the functions involved in P ,
while H is a convex cone that depends on the type of constraints which define P .

The disjunction between K and H is proved by showing that they lie in two disjoint level
sets of a separating functional. When such a functional can be found linear, then we say that
K and H admit linear separation. A suitable subclass of separating functionals is said to be
regular, iff the separation obtained by means of a functional of such a subclass guarantees
the disjunction between K and H.

Exploiting separation arguments in the IS, several theoretical aspects can be developed,
as duality, Lagrangian-type optimality conditions, regularity, and penalization.
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Duality arises from the existence of a linear separation between K and H, while necessary
optimality conditions arise from the linear separation between a convex conical approxima-
tion of K and H.

Penalization turns out to be closely related to nonlinear separation [2,3].
The existence of a regular separating functional characterizes strong duality of P . In the

paper, we focus our attention on Wolfe duality [10] and we show that the existence of a regular
linear separation guarantees the equivalence between Wolfe and Mond-Weir duality [6].

Let us recall the main notations and definitions that will be used in the sequel.
IRn+ := {x ∈ IRn : x ≥ 0}. A set H ⊆ IRn is said to be a cone iff λH ⊆ H, with

λ ∈ IR+ \{0} , and a convex cone iff, in addition, H + H ⊆ H, where H + H = {h1 + h2 ∈
IRn : h1 ∈ H, h2 ∈ H}. cone H = {y ∈ IRn : y = λx, λ > 0, x ∈ H}. The closure, the
interior,the relative interior, the boundary, the relative boundary and the convex hull of a set
H are denoted by clH, intH, ri H, bd H, rbd H, and conv H, respectively. aff H and lin H
will denote the smallest affine variety and the smallest subspace that contain H, respectively.
H∗ := {y ∈ IRn : 〈x, y〉 ≥ 0, ∀x ∈ H} is the positive polar of H, where 〈·, ·〉 is the scalar
product in IRn . T C(H) denotes the (Bouligand) tangent cone to H at 0 ∈ IRn . Let a, b ∈ IRm ,
C ⊂ IRm be a closed and convex cone; a ≥C b iff a − b ∈ C .

Let X be a convex subset of IRn and f : X −→ IRm . f is called C − f unction on X , iff
∀x1, x2 ∈ X , we have

(1 − α) f (x1) + α f (x2) − f ((1 − α)x1 + αx2)) ∈ C, ∀α ∈ [0, 1].
f is called C − convexlike on X , iff ∀x1, x2 ∈ X , ∀α ∈ [0, 1],

∃x̂ ∈ X s.t.(1 − α) f (x1) + α f (x2) − f (x̂) ∈ C.

f is called C − preconvexlike on X , iff ∀x1, x2 ∈ X , ∀α ∈ [0, 1],
∃ρ > 0, ∃x̂ ∈ X s.t.(1 − α) f (x1) + α f (x2) − ρ f (x̂) ∈ C.

2 Preliminaries on image space analysis

Let us consider a constrained extremum problem in the following format:

f ↓ := min f (x), x ∈ R := {x ∈ X : g(x) ∈ D} (1)

where f : X ⊆ IRn −→ IR, g : X −→ IRm , D := 0p × IRm−p
+ , so that p and m − p (with

m ≥ p) are the numbers of constraining equalities and inequalities, respectively, and where
Op := (0, . . . , 0) ∈ IRp . We stipulate that D = IRm+ if p = 0 and D = 0m if p = m; R = X
if m = 0 so that D is not defined. What follows requires only formal changes for the case
where X is a subset of a Banach space and f and g have finite dimensional images.

The dual problem of (1) is defined by:

sup
λ∈D∗

inf
x∈X

L(x; λ), (2)

where

L(x; λ) := f (x) − 〈λ, g(x)〉
is the Lagrangian function associated with (1). By symmetry, (1) is associated with the prob-
lem

inf
x∈X

sup
λ∈D∗

L(x; λ), (3)
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which, under the assumption R �= ∅, turns out to be equivalent to (1). (2) and (3) fulfil the
inequality:

sup
λ∈D∗

inf
x∈X

L(x; λ) ≤ inf
x∈X

sup
λ∈D∗

L(x; λ), (4)

so that weak duality holds, whatever (1) may be. The difference between the right-hand side
and left-hand side of (4) is called duality gap.

We remark that x̄ ∈ R is a (global) minimum point of (1), iff the system (in the unknown x):

f (x̄) − f (x) > 0, g(x) ≥D 0, x ∈ X (5)

is impossible. Let us introduce the sets:

Kx̄ := {(u, v) ∈ IR × IRm : u = f (x̄) − f (x), v = g(x), x ∈ X}.

H := {(u, v) ∈ IR × IRm : u > 0, v ≥D 0}

Hu := {(u, v) ∈ IR × IRm : u > 0, v = 0}
Kx̄ is called the image associated with (1).
We observe that the impossibility of system (5) is equivalent to the condition

Kx̄ ∩ H = ∅. (6)

so that x̄ ∈ R is a minimum point of (1) iff (6) holds.
To prove directly whether Kx̄ ∩ H = ∅ or not is generally too difficult. Therefore, in

order to show such a disjunction, it will be proved that the two sets, or the set H and an
extension of the image depending on H, lie in two disjoint level sets of a functional; when
such a functional can be found linear, then Kx̄ and H will be called “linearly separable”. A
linear separation is said to be “proper” iff the two sets are not both contained in the separating
hyperplane.

In general, the image of a generalized system is not convex even when the functions
involved enjoy some convexity properties. To overcome this difficulty, we introduce a reg-
ularization of the image Kx̄ , namely the extension with respect to the cone clH, denoted
by E :

E := Kx̄ − clH = {(u, v) ∈ IR × IRm : u ≤ f (x̄) − f (x), v ≤D g(x), x ∈ X}
The importance of the conic extension is enforced by the following statement:

Proposition 2.1 Condition (6) holds iff

E ∩ H = ∅. (7)

or, equivalently,

E ∩ Hu = ∅. (8)

Proof In order to prove (7) it is enough to note that

H + clH = H. (9)

We show that (7) and (8) are equivalent.
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Obviously, (7) implies (8), since Hu ⊆ H. To prove the reverse implication, ab absurdo,
suppose that (8) holds and there exists (ū, v̄) ∈ E ∩ H. Since

E − clH = Kx̄ − (clH + clH) = E, (10)

then (ū, v̄) − (0, v̄) = (ū, 0) ∈ E . Since (ū, 0) ∈ Hu , this leads to a contradiction. ��

The optimality condition of x̄ can be expressed in terms of the disjunction between the
sets E and H.

Proposition 2.2 x̄ ∈ R is a (global) minimum point for (1) iff

E ∩ H = ∅. (11)

Exploiting the fact that H is a cone, we obtain a further characterization of the optimality
condition in the IS.

Corollary 2.1 (11) is equivalent to

cone(E) ∩ H = ∅. (12)

3 Linear separation in the image space

Definition 3.1 The sets Kx̄ and H admit a linear separation, iff there exist θ∗ ≥ 0 and
λ∗ ∈ D∗ with (θ∗, λ∗) �= 0, such that:

θ∗[ f (x̄) − f (x)] + 〈λ∗, g(x)〉 ≤ 0, ∀x ∈ X. (13)

If in (13) θ∗ �= 0, then the separation is said to be regular.

Next result shows that a linear functional separates Kx̄ and H, iff it separates E and H.

Proposition 3.1 Let (θ∗, λ∗) ∈ H∗ \ {0}. Then the following conditions are equivalent

(i) θ∗u + 〈λ∗, v〉 ≤ 0, ∀(u, v) ∈ Kx̄ .

(ii) θ∗u + 〈λ∗, v〉 ≤ 0, ∀(u, v) ∈ E .

Proof Suppose that (i) holds. Let (h1, h2) ∈ H. Since θ∗(−h1) + 〈λ∗,−h2〉 ≤ 0, then

θ∗(u − h1) + 〈λ∗, v − h2〉 ≤ 0, ∀(u, v) ∈ Kx̄ ,

and (ii) holds.
(ii) ⇒ (i) is obvious, since Kx̄ ⊆ E . ��

The previous result allows us to consider condition (11) which can be proved by showing
that E and H lie in two disjoint level sets of a suitable functional: when such a functional can
be found linear we say that E and H admit linear separation.

Theorem 3.1 Kx̄ and H are properly linearly separable iff

r i conv(E) ∩ ri H = ∅. (14)

Lemma 3.1 Let B ⊆ IRm be a convex set and S ⊆ IRm . Then,

conv (S + B) = conv(S) + B.

123



J Glob Optim (2008) 42:401–412 405

Proof (⊆) Let µi ≥ 0 with
p∑

i=1
µi = 1. If si ∈ S, bi ∈ B, i = 1, . . . , p, then

p∑

i=1

µi (si + bi ) =
p∑

i=1

µi si +
p∑

i=1

µi bi ∈ conv(S) + B,

since B is convex.
(⊇) If si ∈ S, i = 1, . . . , p and b ∈ B, then

p∑

i=1

µi si + b =
p∑

i=1

µi (si + b) ∈ conv(S + B),

and the inclusion is proved. ��

The previous result allows us to consider the following equivalent formulation of
Theorem 3.1.

Theorem 3.2 E and H are properly linearly separable iff

0 �∈ ri conv(E) (15)

Proof We recall [8] that for any couple of convex sets A and B in IRm and for any γ , µ ∈ IR
we have that

ri(γ A + µB) = γ ri(A) + µri(B), ri(A) = ri[cl(A)].
Therefore (14) is equivalent to

0 �∈ ri(conv(E)) − ri(H) = ri(conv(E)) − ri(clH) = ri(conv(E) − clH).

By Lemma 2.1

conv(E) − clH = conv(E − clH) = conv(E)

which completes the proof. ��
Remark 3.1 We observe that 0 �∈ ri conv(E) iff 0 and E are properly linearly separable,
which means that E admits a supporting hyperplane at the origin that does not contain E .

Let

L(θ; λ, x) := θ f (x) − 〈λ, g(x)〉
be the generalized Lagrangian function associated with (1).

Proposition 3.2 Suppose that x̄ ∈ R. Then E and H admit a linear separation, iff there exist
θ∗ ≥ 0 and λ∗ ∈ D∗ with (θ∗, λ∗) �= 0, such that (λ∗, x̄) is a saddle point for L(θ∗; λ, x)

on D∗ × X.

Proof Suppose that E and H admit a linear separation. Since x̄ ∈ R, then 〈λ∗, g(x̄)〉 ≥ 0, so
that (13) implies 〈λ∗, g(x̄)〉 = 0. Therefore (13) is equivalent to the inequality:

L(θ∗; λ∗, x̄) ≤ L(θ∗; λ∗, x), ∀x ∈ X.

The inequality

L(θ∗; λ∗, x̄) ≥ L(θ∗; λ, x̄), ∀λ ∈ D∗
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is equivalent to

0 ≤ 〈λ, g(x̄)〉, ∀λ ∈ D∗

which is fulfilled since g(x̄) ∈ D. ��

We recall the next result, Theorem 2.2.7 of [2], that will allow us to characterize the
regularity of a linear separation.

Theorem 3.3 Let C ⊂ IRn be a nonempty convex cone with 0 �∈ C, such that C + clC = C
and F be any face of C. Let S ⊆ IRn be nonempty with 0 ∈ clS and such that S − clC is
convex. Then F is contained in every hyperplane which separates C and S if and only if

F ⊆ T C(S − clC).

By the obvious remark that C and S are linearly separable if and only if so are C and convS,
we obtain the following generalization of Theorem 3.3:

Theorem 3.4 Let C ⊂ IRn be a nonempty convex cone with 0 �∈ C, such that C + clC = C
and F be any face of C. Let S ⊆ IRn be nonempty with 0 ∈ clS. Then F is contained in every
hyperplane which separates C ans S if and only if

F ⊆ T C(conv(S − clC)). (16)

Proof Applying Theorem 3.3, replacing S by convS, we obtain that F is contained in every
hyperplane which separates C ans S if and only if

F ⊆ T C(conv(S) − clC).

By Lemma 3.1, where we put B := −clC , we achieve (16). ��

Specializing the previous theorem to the case of the separation between E and H we obtain
the following regularity condition.

Theorem 3.5 E and H admit a separating hyperplane of equation

θ∗u + 〈λ∗, v〉 = 0, wi th θ∗ > 0, λ∗ ∈ D∗ (17)

iff

T C(conv(E)) ∩ Hu = ∅ (18)

Proof Let S := E , C := H and F := Hu . Observe that, because of (10), condition (18) is
equivalent to the negation of (16). Applying Theorem 3.4, we obtain that is equivalent to the
fact that there exists a hyperplane that separates E and H which does not contain Hu , so that
its equation has the form (17). ��

We recall the following result due to Lemarechal and Hiriart-Urruty [4].

Proposition 3.3 Let B be a convex set in IRm and x ∈ rbd(B). Then B admits a supporting
hyperplane at x and its normal vector belongs to aff(B − x).

Proof See Lemma 4.2.1 and Remark 4.2.2 of Chapter III in [4]. ��

We are now in the position to prove a generalization of the classic Slater constraint
qualification.
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Theorem 3.6 Suppose that E and H admit a proper linear separation and, furthermore,

0 ∈ ri conv(g(X) − D). (19)

Then there exist θ∗ > 0 and λ∗ ∈ D∗, such that

θ∗u + 〈λ∗, v〉 ≤ 0, ∀(u, v) ∈ E (20)

Proof By Theorem 3.2, proper linear separation is equivalent to

0 �∈ ri conv(E).

Since 0 ∈ E then 0 ∈ rbd[conv(E)].
Applying Proposition 3.3, we obtain that there exist (θ∗, λ∗) ∈ a f f [conv(E)] such that

(20) holds. Since 0 ∈ E then (θ∗, λ∗) ∈ lin[conv(E)].
Ab absurdo, suppose that θ∗ = 0. Then

λ∗ ∈ lin[(conv(g(X) − D)], (21)

and (20) implies

〈λ∗, v〉 ≤ 0, ∀v ∈ conv(g(X) − D). (22)

By (19), there exists a neighbourhood U of 0 ∈ IRm such that

V := U ∩ lin[conv(g(X) − D)] ⊆ conv[g(X) − D].
Taking into account (21), we obtain that γ λ∗ ∈ V for |γ | < ε, sufficiently small. Since
V ⊆ conv[g(X) − D], by (22),

γ 〈λ∗, λ∗〉 ≤ 0, ∀γ : |γ | < ε,

which is impossible, for λ∗ �= 0. ��
Remark 3.2 When int D �= ∅, then (19) collapses to the classic Slater condition

∃x̄ ∈ X s.t. g(x̄) ∈ int D. (23)

4 The Wolfe and Mond-Weir duals

In the IS, (2) turns out to be equivalent to the following problem:

inf
λ∈D∗ sup

(u,v)∈Kx̄

[u + 〈λ, v〉] (24)

Observe that the following relations hold:

inf
λ∈D∗ sup

(u,v)∈Kx̄

[u + 〈λ, v〉] ≥ sup
(u,v)∈Kx̄

inf
λ∈D∗[u + 〈λ, v〉] = sup

(u,v)∈Kx̄
v∈D

(u) (25)

Because of the equality, the second side in (25) will be called image primal problem. The
difference between the first and the second side in (25) is the image duality gap.

Let S ⊆ IR1+m , and consider the function

δ∗(λ, S) := sup
(u,v)∈S

[u + 〈λ, v〉], λ ∈ D∗, (26)
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and observe that, if in (26) there were (θ, λ) ∈ IR × IRm (instead of (θ, λ) ∈ {1} × D∗), then
δ∗ should be the support function of S; therefore, (26) is its restriction to the subset {1}× D∗.
The elements of the set

Z(λ, S) := argsup(u,v)∈S[u + 〈λ, v〉], λ ∈ D∗, (27)

are the arguments of the supremum in (26); they may have one or more components equal
to +∞ (−∞ iff S = ∅); if the supremum is finite, but not maximum, and (u, v) ∈ Z(λ, S)

is finite, then (u, v) is called Weierstrass point. In the sequel, S will be either Kx̄ or E .

Theorem 4.1 (i) Suppose that x̄ ∈ R and that δ∗(λ; E) < +∞ for at least one λ ∈ D∗.
Then (24) is finite and equals both:

inf
(u,v)∈Z(λ;Kx̄ )

λ∈D∗
[u + 〈λ, v〉], (28)

and

inf
(u,v)∈Z(λ;E)

λ∈D∗
[u + 〈λ, v〉]. (29)

(ii) Suppose that (18) is fulfilled. Then the infimum in (24) is achieved, equals the 2nd and
3rd sides of (25) and both:

min
(u,v)∈Z(λ;Kx̄ )

λ∈D∗
[u + 〈λ, v〉], (30)

and

min
(u,v)∈Z(λ;E)

λ∈D∗
[u + 〈λ, v〉]. (31)

Proof (i) The nonemptyness of R implies the existence of (û, v̂) ∈ Kx̄ ∩(IR ×D). Therefore,
we have:

û + 〈λ, v̂〉 ≥ û, ∀λ ∈ D∗.

It follows that, if λ ∈ D∗, then the supremum in (24) is ≥ û. This inequality and the assump-
tion on δ∗ imply that the infimum in (24) is finite. To complete the proof it is enough to note
that, similarly to what happens for Proposition 3.1, the infimum in (24) does not change if
in (26) we replace (u, v) ∈ Kx̄ with (u, v) ∈ E .

(ii) By Theorem 3.5, (18) is equivalent to the existence of a regular linear separation
between E and H, so that (13) holds with θ∗ > 0. With no loss of generality we can suppose
θ∗ = 1.

By Proposition 3.2, linear separation between E and H is equivalent to the existence of a
saddle point of the generalized Lagrangian L(1; λ, x) on D∗ × X , which can be expressed
by the relation

sup
λ∈D∗

inf
x∈X

L(x; λ) = inf
x∈X

sup
λ∈D∗

L(x; λ) (32)

and, moreover, the supremum and the infimum are attained in the first and second side of
(32), respectively. By changing the sign and adding f (x̄) in (32), and taking into account the
definition of Kx̄ , we obtain

inf
λ∈D∗ sup

(u,v)∈Kx̄

[u + 〈λ, v〉] = sup
(u,v)∈Kx̄

inf
λ∈D∗[u + 〈λ, v〉].

123



J Glob Optim (2008) 42:401–412 409

To complete the proof, it is enough to observe that, by Proposition 3.1, the set of multi-
pliers (1, λ) that define the gradient of a separating hyperplane between Kx̄ and H or E and
H, coincide. ��

The dual problem (24) can be associated with two bounds, by splitting the sign of the
scalar product 〈λ, v〉.
Proposition 4.1 The dual problem (24) enjoys the inequalities:

inf
λ∈D∗ sup

(u,v)∈Kx̄〈λ,v〉≥0

(u) ≤ inf
λ∈D∗ sup

(u,v)∈Kx̄

[u + 〈λ, v〉] ≤ inf
λ∈D∗ sup

(u,v)∈Kx̄〈λ,v〉≤0

(u) (33)

Proof It is an immediate consequence of the obvious relations:

〈λ, v〉 ≥ 0 ⇔ u ≤ u + 〈λ, v〉; 〈λ, v〉 ≤ 0 ⇔ u ≥ u + 〈λ, v〉.
��

Theorem 4.2 Suppose that (18) is fulfilled. Then

min
(u,v)∈Z(λ;Kx̄ )

λ∈D∗
[u + 〈λ, v〉] = min

(u,v)∈Z(λ;Kx̄ )
〈λ,v〉≤0
λ∈D∗

(u), (34)

Proof By Theorem 3.5, (18) implies the existence of λ∗ ∈ D∗ such that

u + 〈λ∗, v〉 ≤ 0, ∀(u, v) ∈ Kx̄ . (35)

Therefore the image of the point x̄ , say (0, v̄), belongs to Z(λ∗; Kx̄ ). We also observe that,
since (0, v̄) ∈ Kx̄ and v̄ ∈ D, then

u + 〈λ, v〉 ≥ 0, ∀(u, v) ∈ Z(λ; Kx̄ ), λ ∈ D∗.

Therefore

min
(u,v)∈Z(λ;Kx̄ )

λ∈D∗
[u + 〈λ, v〉] ≥ 0.

By (35) we have that the point (u, v, λ) := (0, v̄, λ∗) is a global minimum point of the 1st
problem in (34). It is obvious that

min
(u,v)∈Z(λ;Kx̄ )

λ∈D∗
[u + 〈λ, v〉] ≤ min

(u,v)∈Z(λ;Kx̄ )
〈λ,v〉≤0
λ∈D∗

[u + 〈λ, v〉] ≤ min
(u,v)∈Z(λ;Kx̄ )

〈λ,v〉≤0
λ∈D∗

(u), (36)

Since (0, v̄, λ∗) fulfils the inequality

〈λ∗, v̄〉 ≤ 0,

then by (35) we have that such a point is feasible for the 2nd problem in (34). From the
inequalities (36) we derive that (34) is fulfilled. ��
Remark 4.1 Suitable generalized convexity assumptions on the function F(x) := ( f (x),

−g(x)) turn out to be equivalent to the convexity of the extended image E or of cone(E). In
particular,
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(i) E is convex iff F is (IR+ ×D)-convexlike on X [9];
(ii) cone(E) is convex iff ( f − f (x̄),−g) is (IR+ ×D)-preconvexlike on X [11].

Theorem 4.3 Let x̄ be a global minimum point to (1). Suppose that the function ( f,−g) is
(IR ×D)-convexlike on X and that (19) is fulfilled. Then

f (x̄) = max
λ∈D∗ inf

x∈X
L(x; λ) = max

λ∈D∗ inf
x∈X

〈λ,g(x)〉≤0

f (x), (37)

Proof From Remark 4.1 we have that E is convex so that (13) holds. Moreover, by Theorem
3.6, since (19) is fulfilled, then we can suppose that θ∗ > 0. Recalling that

f (x̄) = min
x∈X

sup
λ∈D∗

L(x; λ),

by Proposition 3.2 we obtain that the first equality in (37) holds. The second equality follows
from Theorem 4.2, observing that the existence of a regular linear separation implies that
(18) is fulfilled. ��

Now, for every λ ∈ D∗, consider the set of points x̂ ∈ X such that

f (x̂) − 〈λ, g(x̂)〉 = inf
x∈X

[ f (x) − 〈λ, g(x)〉], (38)

and let

M := {(x̂, λ) ∈ X × D∗ s.t. (38) is fulfilled}.
Observe that the point (u, v) ∈ Kx̄ defined by

u = f (x̄) − f (x̂), v = g(x̂),

belongs to the set Z(λ, Kx̄ ).
This position leads us to prove the following result.

Theorem 4.4 Let x̄ be a global minimum point to (1) and let A ⊆ M be such that there
exists λ̄ ∈ D∗ with (x̄, λ̄) ∈ A. Then

f (x̄) = max
(x,λ)∈A

L(x; λ) (39)

Proof From (4) it follows that

inf
x∈X

L(x; λ) ≤ inf
x∈R

f (x) = f (x̄), ∀λ ∈ D∗,

which implies

L(x; λ) ≤ f (x̄), ∀(x, λ) ∈ M. (40)

Computing (40) for (x, λ) := (x̄, λ̄), we obtain

−〈λ̄, g(x̄)〉 ≤ 0.

Since x̄ ∈ R, the previous inequality leads to the complementarity condition

〈λ̄, g(x̄)〉 = 0, (41)
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and, in turn, to

L(x̄; λ̄) = f (x̄),

which completes the proof. ��

In the hypothesis where ( f,−g) is a differentiable (IR+ ×D)-function and X is an open
set, setting

A := {(x, λ) ∈ X × D∗ : ∇x L(x; λ) = 0}
the problem that appears in the right-hand side of (39) collapses to the Wolfe dual. Setting

A := {(x, λ) ∈ X × D∗ : ∇x L(x; λ) = 0, 〈λ, g(x)〉 ≤ 0}
then by Theorem 4.4 we can easily recover the Mond-Weir duality. We recall that the Mond-
Weir dual [6] is defined by

max
(x,λ)∈A

f (x).

Corollary 4.1 Let X be an open set in IRn and let x̄ be a global minimum point to (1).
Suppose that the function ( f,−g) is a differentiable (IR+ ×D)-function on X and that (19)
is fulfilled. Then

f (x̄) = max
(x,λ)∈A

f (x). (42)

Proof Since ( f,−g) is a differentiable (IR+ ×D)-function then it is also (IR+ ×D)-
convexlike on X so that E is convex (see Remark 4.1); moreover, L(x; λ) is a differen-
tiable convex function with respect to x , for every λ ∈ D∗. Taking into account Proposition
3.2 and Theorem 3.6, we obtain that there exists λ̄ ∈ D∗ such that

L(x; λ̄) ≥ L(x̄, λ̄), ∀x ∈ X,

which implies that (x̄, λ̄) ∈ A ⊆ M . Since

L(x; λ) ≥ f (x), ∀(x, λ) ∈ A,

then, by Theorem 4.4, we have that

f (x̄) = max
(x,λ)∈A

L(x; λ) ≥ max
(x,λ)∈A

f (x),

which leads to (42). ��

5 Concluding remarks

Most of duality theories existing in the literature may have as a common theoretical back-
ground the linear separation between two sets in the Image Space. We have considered the
Wolfe and Mond-Weir duals, providing their interpretation in the Image Space. In particular,
we have shown that the existence of a regular linear separation is a sufficient conditions for
the equivalence of such dual problems.
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